Last updated: 2023-08-17
Checks: 7 0
Knit directory: Hevesi_2023/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230121)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 54541d8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: .cache/
Ignored: .config/
Ignored: .nv/
Ignored: .snakemake/
Ignored: cellbender/
Ignored: cellranger/
Ignored: data/Pr5P7_clusters.h5ad
Ignored: data/THP7_clusters.h5ad
Ignored: fastq/
Ignored: souporcell/
Unstaged changes:
Modified: data/neuro_fin-THP7.h5seurat
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/figure_2e-Pr5P7.Rmd
) and
HTML (docs/figure_2e-Pr5P7.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 54541d8 | Evgenii O. Tretiakov | 2023-08-17 | updated output |
html | 9014631 | Evgenii O. Tretiakov | 2023-08-17 | Build site. |
Rmd | c72ad49 | Evgenii O. Tretiakov | 2023-08-17 | fix typos |
Rmd | d1dcfea | Evgenii O. Tretiakov | 2023-08-02 | alternative stacked violin plot may be helpful for ventrobasal thalamus where we show two clusters with dotplot relative scale |
html | 263f215 | Evgenii O. Tretiakov | 2023-03-13 | Build site. |
Rmd | 3111dee | Evgenii O. Tretiakov | 2023-03-13 | workflowr::wflow_publish(c("analysis/eda.Rmd", "analysis/figure_2d-THP7.Rmd", |
html | 4ef209f | Evgenii O. Tretiakov | 2023-03-05 | Build site. |
Rmd | e584a94 | Evgenii O. Tretiakov | 2023-03-04 | workflowr::wflow_publish(c("analysis/eda.Rmd", "analysis/figure_2d-THP7.Rmd", |
Load dataset
srt <- LoadH5Seurat(here(data_dir, "Pr5P7_clusters.h5Seurat"))
Idents(srt) <- "sep_clstr"
neurons <- subset(srt, subset = Rbfox3 > 0 | Elavl4 > 0 | Snap25 > 0 | Stmn2 > 0)
gneurons <- subset(neurons, subset = Galr1 > 0)
We check list of genes based on our prior knowledge.
gene_of_interest <-
c("Gal", "Galr1", "Galr2", "Galr3",
"Ntn1", "Ntn2", "Ntn3", "Ntn4", "Ntn5",
"Slit1", "Dcc",
"Prkaca", "Adcy1", "Grin1",
"Oxt", "Npy", "Sst", "Avp")
genes_present <- Gene_Present(data = srt, gene_list = gene_of_interest)
genes_present
$found_features
[1] "Gal" "Galr1" "Galr2" "Ntn1" "Ntn3" "Ntn4" "Slit1" "Dcc"
[9] "Prkaca" "Adcy1" "Grin1" "Npy" "Sst"
$bad_features
[1] "Galr3" "Ntn2" "Ntn5" "Oxt" "Avp"
$wrong_case_found_features
[1] "NA (check not performed. Set 'case_check = TRUE' to perform check."
DotPlot_scCustom(
seurat_object = srt,
assay = "RNA",
features = genes_present$found_features,
flip_axes = TRUE,
x_lab_rotate = TRUE,
colors_use = viridis(n = 30, alpha = .75, direction = -1, option = "E"))
DimPlot_scCustom(
srt,
label = TRUE,
repel = TRUE,
pt.size = 2,
figure_plot = TRUE
) + ggtitle("Clusters") + NoLegend()
Version | Author | Date |
---|---|---|
4ef209f | Evgenii O. Tretiakov | 2023-03-05 |
sbs_mtx_neuro <-
neurons %>%
GetAssayData("data", "RNA") %>%
as.data.frame() %>%
t()
rownames(sbs_mtx_neuro) <- colnames(neurons)
# Filter features
filt_low_genes2 <-
colSums(sbs_mtx_neuro) %>%
.[. > quantile(., 0.01)] %>%
names()
sbs_mtx_neuro %<>% .[, filt_low_genes2]
min_filt_vector2 <-
sbs_mtx_neuro %>%
as_tibble() %>%
select(all_of(filt_low_genes2)) %>%
summarise(across(.fns = ~ quantile(.x, .005))) %>%
as.list %>%
map(as.double) %>%
simplify %>%
.[filt_low_genes2]
# Prepare table of intersection sets analysis
content_sbs_mtx_neuro <-
(sbs_mtx_neuro > min_filt_vector2) %>%
as_tibble() %>%
mutate_all(as.numeric)
neurons$gaba_status <-
content_sbs_mtx_neuro %>%
select(Gad1, Gad2, Slc32a1) %>%
mutate(gaba = if_all(.fns = ~ .x > 0)) %>%
.$gaba
neurons$gaba_expr <-
content_sbs_mtx_neuro %>%
select(Gad1, Gad2, Slc32a1) %>%
mutate(gaba = if_any(.fns = ~ .x > 0)) %>%
.$gaba
neurons$glut_status <-
content_sbs_mtx_neuro %>%
select(Slc17a6) %>%
mutate(glut = Slc17a6 > 0) %>%
.$glut
neuro_fin <-
subset(neurons,
cells = union(
WhichCells(neurons,
expression = gaba_status == TRUE & glut_status == FALSE),
WhichCells(neurons,
expression = glut_status == TRUE & gaba_expr == FALSE)))
neuro_fin$status <- neuro_fin$gaba_status %>%
if_else(true = "GABAergic",
false = "glutamatergic")
Idents(neuro_fin) <- "status"
sbs_mtx_neuro <-
neuro_fin %>%
GetAssayData("data", "RNA") %>%
as.data.frame() %>%
t()
rownames(sbs_mtx_neuro) <- colnames(neuro_fin)
# Filter features
filt_low_genes2 <-
colSums(sbs_mtx_neuro) %>%
.[. > quantile(., 0.01)] %>%
names()
sbs_mtx_neuro %<>% .[, filt_low_genes2]
min_filt_vector2 <-
sbs_mtx_neuro %>%
as_tibble() %>%
select(all_of(filt_low_genes2)) %>%
summarise(across(.fns = ~ quantile(.x, .005))) %>%
as.list %>%
map(as.double) %>%
simplify %>%
.[filt_low_genes2]
# Prepare table of intersection sets analysis
content_sbs_mtx_neuro <-
(sbs_mtx_neuro > min_filt_vector2) %>%
as_tibble() %>%
mutate_all(as.numeric)
sbs_mtx_neuro_full <- content_sbs_mtx_neuro |>
select(any_of(c(neurotrans, glutr, gabar, "Gal", "Galr1"))) |>
dplyr::bind_cols(neuro_fin@meta.data)
sbs_mtx_neuro_full |> glimpse()
Rows: 164
Columns: 107
$ Slc17a6 <dbl> 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Slc17a7 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Slc17a8 <dbl> 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0…
$ Slc1a1 <dbl> 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Slc1a2 <dbl> 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1…
$ Slc1a6 <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0…
$ Gad1 <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Slc32a1 <dbl> 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Slc6a1 <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1…
$ Gria1 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1…
$ Gria2 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Gria3 <dbl> 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0…
$ Gria4 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…
$ Grid1 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…
$ Grid2 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Grik1 <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Grik2 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Grik3 <dbl> 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0…
$ Grik4 <dbl> 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1…
$ Grik5 <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1…
$ Grin1 <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1…
$ Grin2a <dbl> 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0…
$ Grin2b <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Grin2c <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Grin2d <dbl> 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1…
$ Grin3a <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1…
$ Grin3b <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Grm1 <dbl> 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1…
$ Grm5 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Grm2 <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0…
$ Grm3 <dbl> 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1…
$ Grm4 <dbl> 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1…
$ Grm7 <dbl> 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1…
$ Grm8 <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1…
$ Gabra1 <dbl> 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1…
$ Gabra2 <dbl> 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1…
$ Gabra3 <dbl> 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1…
$ Gabra4 <dbl> 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1…
$ Gabra5 <dbl> 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1…
$ Gabrb1 <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1…
$ Gabrb2 <dbl> 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1…
$ Gabrb3 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Gabrg1 <dbl> 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1…
$ Gabrg2 <dbl> 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1…
$ Gabrg3 <dbl> 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Gabrd <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Gabrq <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Gabrr2 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ Gabbr1 <dbl> 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1…
$ Gabbr2 <dbl> 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1…
$ Galr1 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
$ nCount_RAW <dbl> 6712, 5209, 18763, 6898, 3283, 15041, 10…
$ nFeature_RAW <int> 3046, 2466, 5240, 2954, 1840, 4537, 3708…
$ nCount_SCT <dbl> 6665, 5950, 6715, 6788, 5978, 7140, 7432…
$ nFeature_SCT <int> 3029, 2444, 2903, 2937, 1830, 3254, 3624…
$ nCount_RNA <dbl> 6690, 5196, 18708, 6876, 3277, 15002, 10…
$ nFeature_RNA <int> 3046, 2465, 5240, 2954, 1840, 4532, 3705…
$ log10GenesPerUMI <dbl> 0.9106776, 0.9128415, 0.8706244, 0.90438…
$ percent_mito <dbl> 0.014947683, 0.000000000, 0.010690614, 0…
$ percent_ribo <dbl> 0.17937220, 0.15396459, 0.17104982, 0.29…
$ percent_hb <dbl> 0.014947683, 0.000000000, 0.010690614, 0…
$ var_regex <dbl> 2.152466, 4.792148, 2.902502, 4.479348, …
$ S.Score <dbl> -0.0460504870, 0.0340772974, -0.02898078…
$ G2M.Score <dbl> -0.0505531289, -0.0806596774, -0.0113846…
$ log_prob_doublet <dbl> -47.18951, -298.95695, -378.18579, -293.…
$ orig.ident <chr> "Pr5P7", "Pr5P7", "Pr5P7", "Pr5P7", "Pr5…
$ comb_clstr1 <fct> 1, 1, 5, 1, 9, 3, 3, 2, 7, 7, 1, 1, 3, 5…
$ comb_clstr2 <fct> 12, 3, 6, 3, 5, 2, 2, 2, 10, 10, 10, 10,…
$ QC <chr> "Pass", "Pass", "Pass", "Pass", "Pass", …
$ cell_name <chr> "Pr5P7_CTACAGACACCAGTTA-1", "Pr5P7_GGTGT…
$ RNA_snn_res.0.2 <fct> 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2…
$ RNA_snn_res.0.228090737068544 <fct> 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2…
$ RNA_snn_res.0.257501399916775 <fct> 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2…
$ RNA_snn_res.0.288327257678505 <fct> 2, 2, 1, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 3…
$ RNA_snn_res.0.320672973912272 <fct> 2, 2, 1, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 3…
$ RNA_snn_res.0.354653793841904 <fct> 2, 2, 1, 2, 1, 3, 3, 3, 2, 2, 2, 2, 3, 3…
$ RNA_snn_res.0.390396916313969 <fct> 1, 1, 2, 1, 2, 3, 3, 3, 1, 1, 1, 1, 3, 3…
$ RNA_snn_res.0.42804308489375 <fct> 1, 1, 2, 1, 2, 3, 3, 3, 1, 1, 1, 1, 3, 3…
$ RNA_snn_res.0.467748440052595 <fct> 1, 1, 2, 1, 2, 3, 3, 3, 1, 1, 1, 1, 3, 3…
$ RNA_snn_res.0.509686683836658 <fct> 1, 1, 2, 1, 2, 3, 3, 3, 1, 1, 1, 1, 3, 3…
$ RNA_snn_res.0.55405162030143 <fct> 1, 1, 2, 1, 2, 3, 3, 3, 1, 1, 1, 1, 3, 3…
$ RNA_snn_res.0.601060150080292 <fct> 1, 1, 2, 1, 2, 3, 3, 3, 1, 1, 1, 1, 3, 3…
$ RNA_snn_res.0.650955816707991 <fct> 1, 1, 3, 1, 5, 2, 2, 2, 1, 1, 1, 1, 2, 2…
$ RNA_snn_res.0.704013027062187 <fct> 1, 1, 3, 1, 5, 2, 2, 2, 1, 1, 1, 1, 2, 2…
$ RNA_snn_res.0.760542100314118 <fct> 1, 1, 3, 1, 5, 2, 2, 2, 1, 1, 1, 1, 2, 2…
$ RNA_snn_res.0.820895341557435 <fct> 1, 1, 3, 1, 5, 2, 2, 2, 1, 1, 1, 1, 2, 2…
$ RNA_snn_res.0.885474391225604 <fct> 1, 1, 3, 1, 5, 2, 2, 2, 1, 1, 1, 1, 2, 2…
$ RNA_snn_res.0.954739174288687 <fct> 1, 1, 3, 1, 5, 2, 2, 2, 2, 1, 1, 1, 2, 2…
$ RNA_snn_res.1.02921887079277 <fct> 2, 2, 3, 2, 6, 1, 1, 1, 4, 4, 4, 4, 1, 1…
$ RNA_snn_res.1.10952546122871 <fct> 2, 2, 3, 2, 6, 1, 1, 1, 4, 4, 4, 4, 1, 1…
$ RNA_snn_res.1.19637058047566 <fct> 2, 2, 3, 2, 6, 1, 1, 1, 4, 4, 4, 4, 1, 1…
$ RNA_snn_res.1.29058666317047 <fct> 2, 2, 4, 2, 6, 1, 1, 1, 3, 3, 3, 3, 1, 1…
$ RNA_snn_res.1.3931605212185 <fct> 2, 2, 4, 2, 6, 1, 1, 1, 3, 3, 3, 3, 1, 1…
$ RNA_snn_res.1.50529998950619 <fct> 2, 2, 4, 2, 6, 1, 1, 1, 3, 3, 3, 3, 1, 4…
$ RNA_snn_res.1.62850667240407 <fct> 1, 1, 4, 1, 6, 2, 2, 7, 3, 3, 3, 3, 7, 2…
$ RNA_snn_res.1.76469908534095 <fct> 1, 1, 4, 1, 6, 4, 2, 7, 3, 3, 3, 3, 7, 2…
$ RNA_snn_res.1.91638172569127 <fct> 3, 1, 4, 1, 6, 4, 2, 7, 3, 3, 3, 3, 7, 2…
$ RNA_snn_res.2.08652576169017 <fct> 3, 2, 5, 2, 6, 11, 1, 7, 3, 3, 3, 3, 7, …
$ RNA_snn_res.2.27924774611412 <fct> 9, 2, 4, 2, 7, 4, 1, 6, 5, 5, 5, 5, 6, 4…
$ RNA_snn_res.2.50001 <fct> 10, 2, 4, 2, 6, 4, 1, 5, 7, 7, 7, 7, 5, …
$ seurat_clusters <fct> 10, 2, 4, 2, 6, 4, 1, 5, 7, 7, 7, 7, 5, …
$ k_tree <fct> 2, 2, 3, 2, 6, 1, 1, 1, 4, 4, 4, 4, 1, 1…
$ sep_clstr <fct> 2, 2, 3, 2, 6, 1, 1, 1, 4, 4, 4, 4, 1, 1…
$ gaba_status <lgl> TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, F…
$ gaba_expr <lgl> TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, F…
$ glut_status <lgl> FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, T…
$ status <chr> "GABAergic", "GABAergic", "GABAergic", "…
sbs_mtx_neuro_full$Gal_sign <-
sbs_mtx_neuro_full %>%
select(Galr1) %>%
mutate(Gal_sign = if_any(.fns = ~ .x > 0)) %>%
.$Gal_sign
# for reproducibility
set.seed(reseed)
# plot
ggpiestats(
# arguments relevant for `ggpiestats()`
data = sbs_mtx_neuro_full |> filter(status == "glutamatergic"),
x = Gal_sign,
perc.k = 1,
package = "ggsci",
palette = "category10_d3",
# arguments relevant for `combine_plots()`
title.text = "Molecular specification of Pr5 neuronal lineages by Galr1 signalling and main glutamatergic neurotransmitter expression",
caption.text = "Asterisks denote results from proportion tests; \n***: p < 0.001, ns: non-significant",
plotgrid.args = list(nrow = 1)
)
Version | Author | Date |
---|---|---|
263f215 | Evgenii O. Tretiakov | 2023-03-13 |
Molecular specification of Pr5 neuronal lineages by Galr1 signalling and main glutamatergic neurotransmitter expression (no GABAergic cells express Galr1)
p1 <- FeaturePlot_scCustom(
srt, "Slc17a6",
pt.size = 2,
order = TRUE,
alpha_exp = 0.65,
alpha_na_exp = 0.2,
label = TRUE,
repel = TRUE,
colors_use = srt@misc$expr_Colour_Pal) +
ggtitle("Slc17a6(Vglut2): ") + theme(plot.title = element_text(size = 24))
p1
Plot_Density_Custom(
seurat_object = srt,
features = "Slc17a6",
pt.size = 2) +
ggtitle("Slc17a6(Vglut2): ") + theme(plot.title = element_text(size = 24))
Version | Author | Date |
---|---|---|
4ef209f | Evgenii O. Tretiakov | 2023-03-05 |
Plot_Density_Custom(
seurat_object = srt,
features = "Galr1",
pt.size = 2) +
ggtitle("Galr1: ") + theme(plot.title = element_text(size = 24))
Version | Author | Date |
---|---|---|
4ef209f | Evgenii O. Tretiakov | 2023-03-05 |
Plot_Density_Joint_Only(
seurat_object = srt,
features = c("Slc17a6", "Galr1"),
pt.size = 2) +
ggtitle("Slc17a6(Vglut2) + Galr1 ") + theme(plot.title = element_text(size = 24))
Version | Author | Date |
---|---|---|
4ef209f | Evgenii O. Tretiakov | 2023-03-05 |
srt_vglut2 <- subset(srt, idents = c(1, 2, 3, 4, 5, 6, 9))
srt_vglut2 <- subset(srt_vglut2, subset = UMAP_1 > -6 & UMAP_1 < 9)
p2 <- FeaturePlot_scCustom(
srt_vglut2, "Galr1",
pt.size = 5,
order = TRUE,
alpha_exp = 0.75,
alpha_na_exp = 0.05,
colors_use = srt@misc$expr_Colour_Pal) +
ggtitle("Galr1 in Vglut2+ populations") + theme(plot.title = element_text(size = 24))
p2
Version | Author | Date |
---|---|---|
4ef209f | Evgenii O. Tretiakov | 2023-03-05 |
Plot_Density_Custom(
seurat_object = srt_vglut2,
features = "Galr1",
pt.size = 2) +
ggtitle("Galr1 across Vglut cell-populations only") + theme(plot.title = element_text(size = 24))
Version | Author | Date |
---|---|---|
4ef209f | Evgenii O. Tretiakov | 2023-03-05 |
Plot_Density_Joint_Only(
seurat_object = srt_vglut2,
features = c("Slc17a6", "Galr1"),
pt.size = 2) +
ggtitle("Slc17a6 + Galr1 across Vglut cell-populations only") + theme(plot.title = element_text(size = 24))
Version | Author | Date |
---|---|---|
4ef209f | Evgenii O. Tretiakov | 2023-03-05 |
DimPlot_scCustom(
srt_vglut2,
label = TRUE,
repel = TRUE,
pt.size = 3,
figure_plot = TRUE
) + ggtitle("Vglut2+ clusters") + NoLegend()
Version | Author | Date |
---|---|---|
4ef209f | Evgenii O. Tretiakov | 2023-03-05 |
DoHeatmap(srt_vglut2, features = genes_present$found_features)
p3 <- DotPlot_scCustom(
seurat_object = srt_vglut2,
assay = "RNA",
features = genes_present$found_features,
flip_axes = TRUE,
x_lab_rotate = TRUE,
dot.min = .05,
dot.scale = 10,
colors_use = viridis(n = 30, alpha = .75, direction = -1, option = "E"))
p3
p4 <- Stacked_VlnPlot(
seurat_object = srt_vglut2,
assay = "RNA",
features = genes_present$found_features,
x_lab_rotate = F
)
p4
Version | Author | Date |
---|---|---|
9014631 | Evgenii O. Tretiakov | 2023-08-17 |
p1 | p2 | p3
(p1 / p2) | p4
Version | Author | Date |
---|---|---|
9014631 | Evgenii O. Tretiakov | 2023-08-17 |
sessionInfo()
R version 4.3.1 (2023-06-16)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gprofiler2_0.2.2 mrtree_0.0.0.9000 Nebulosa_1.10.0
[4] scCustomize_1.1.3 Scillus_0.5.0 qs_0.25.5
[7] ggstatsplot_0.12.0.9000 UpSetR_1.4.0 patchwork_1.1.3.9000
[10] glmGamPoi_1.12.2 sctransform_0.3.5 SeuratDisk_0.0.0.9020
[13] SeuratWrappers_0.3.1 SeuratObject_4.1.3 Seurat_4.3.0
[16] reticulate_1.31 kableExtra_1.3.4 zeallot_0.1.0
[19] future_1.33.0 skimr_2.1.5 magrittr_2.0.3
[22] lubridate_1.9.2 forcats_1.0.0 stringr_1.5.0
[25] dplyr_1.1.2 purrr_1.0.2 readr_2.1.4
[28] tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.3
[31] tidyverse_2.0.0.9000 viridis_0.6.4 viridisLite_0.4.2
[34] RColorBrewer_1.1-3 here_1.0.1 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] IRanges_2.34.1 R.methodsS3_1.8.2
[3] goftest_1.2-3 phytools_1.9-16
[5] TH.data_1.1-2 vctrs_0.6.3
[7] spatstat.random_3.1-5 RApiSerialize_0.1.2
[9] effectsize_0.8.5 digest_0.6.33
[11] png_0.1-8 shape_1.4.6
[13] git2r_0.32.0 ggrepel_0.9.3
[15] bayestestR_0.13.1 correlation_0.8.4
[17] deldir_1.0-9 parallelly_1.36.0
[19] combinat_0.0-8 magick_2.7.5
[21] MASS_7.3-60 reshape2_1.4.4
[23] httpuv_1.6.11 foreach_1.5.2
[25] BiocGenerics_0.46.0 withr_2.5.0
[27] ggrastr_1.0.2 xfun_0.40
[29] ggfun_0.1.2 ellipsis_0.3.2
[31] survival_3.5-7 memoise_2.0.1
[33] ggbeeswarm_0.7.2 clustree_0.5.0
[35] MatrixModels_0.5-2 janitor_2.2.0.9000
[37] emmeans_1.8.7 parameters_0.21.1
[39] systemfonts_1.0.4 tidytree_0.4.5
[41] zoo_1.8-12 GlobalOptions_0.1.2
[43] pbapply_1.7-2 R.oo_1.25.0
[45] datawizard_0.8.0 rematch2_2.1.2
[47] promises_1.2.1 scatterplot3d_0.3-44
[49] httr_1.4.7 globals_0.16.2
[51] fitdistrplus_1.1-11 ps_1.7.5
[53] stringfish_0.15.8 rstudioapi_0.15.0
[55] miniUI_0.1.1.1 generics_0.1.3
[57] base64enc_0.1-3 processx_3.8.2
[59] S4Vectors_0.38.1 repr_1.1.6
[61] zlibbioc_1.46.0 ggraph_2.1.0.9000
[63] polyclip_1.10-4 quadprog_1.5-8
[65] GenomeInfoDbData_1.2.10 xtable_1.8-4
[67] pracma_2.4.2 doParallel_1.0.17
[69] evaluate_0.21 S4Arrays_1.0.5
[71] hms_1.1.3 GenomicRanges_1.52.0
[73] irlba_2.3.5.1 colorspace_2.1-0
[75] hdf5r_1.3.8 ROCR_1.0-11
[77] spatstat.data_3.0-1 lmtest_0.9-40
[79] snakecase_0.11.0 ggtree_3.9.1
[81] later_1.3.1 lattice_0.21-8
[83] spatstat.geom_3.2-4 future.apply_1.11.0
[85] getPass_0.2-2 scattermore_1.2
[87] cowplot_1.1.1 matrixStats_1.0.0
[89] RcppAnnoy_0.0.21 pillar_1.9.0
[91] nlme_3.1-163 iterators_1.0.14
[93] compiler_4.3.1 RSpectra_0.16-1
[95] stringi_1.7.12 dendextend_1.17.1
[97] tensor_1.5 SummarizedExperiment_1.30.2
[99] plyr_1.8.8 crayon_1.5.2
[101] abind_1.4-5 gridGraphics_0.5-1
[103] sp_2.0-0 graphlayouts_1.0.0
[105] bit_4.0.5 sandwich_3.0-2
[107] fastmatch_1.1-3 whisker_0.4.1
[109] codetools_0.2-19 multcomp_1.4-25
[111] bslib_0.5.1 paletteer_1.5.0
[113] GetoptLong_1.0.5 plotly_4.10.2
[115] mime_0.12 splines_4.3.1
[117] circlize_0.4.16 Rcpp_1.0.11
[119] prismatic_1.1.1 knitr_1.43
[121] utf8_1.2.3 clue_0.3-64
[123] fs_1.6.3 listenv_0.9.0
[125] checkmate_2.2.0 expm_0.999-7
[127] ggplotify_0.1.2 estimability_1.4.1
[129] Matrix_1.6-1 callr_3.7.3
[131] tzdb_0.4.0 svglite_2.1.1
[133] tweenr_2.0.2 pkgconfig_2.0.3
[135] tools_4.3.1 cachem_1.0.8
[137] numDeriv_2016.8-1.1 rvest_1.0.3
[139] fastmap_1.1.1 rmarkdown_2.24
[141] scales_1.2.1 grid_4.3.1
[143] ica_1.0-3 sass_0.4.7
[145] coda_0.19-4 ggprism_1.0.4
[147] BiocManager_1.30.22 insight_0.19.3.2
[149] RANN_2.6.1 ggimage_0.3.3
[151] farver_2.1.1 tidygraph_1.2.3
[153] yaml_2.3.7 MatrixGenerics_1.12.3
[155] cli_3.6.1 BayesFactor_0.9.12-4.4
[157] stats4_4.3.1 webshot_0.5.5
[159] leiden_0.4.3 lifecycle_1.0.3
[161] uwot_0.1.16 Biobase_2.60.0
[163] mvtnorm_1.2-2 backports_1.4.1
[165] timechange_0.2.0 gtable_0.3.3
[167] rjson_0.2.21 ggridges_0.5.4
[169] progressr_0.14.0 parallel_4.3.1
[171] ape_5.7-1 jsonlite_1.8.7
[173] bitops_1.0-7 bit64_4.0.5
[175] Rtsne_0.16 yulab.utils_0.0.7
[177] spatstat.utils_3.0-3 RcppParallel_5.1.7
[179] formattable_0.2.1 highr_0.10
[181] jquerylib_0.1.4 R.utils_2.12.2
[183] lazyeval_0.2.2 shiny_1.7.5
[185] htmltools_0.5.6 data.tree_1.0.0
[187] glue_1.6.2 SymSim_0.0.0.9000
[189] XVector_0.40.0 RCurl_1.98-1.12
[191] treeio_1.25.3 rprojroot_2.0.3
[193] mclust_6.0.0 ks_1.14.1
[195] mnormt_2.1.1 gridExtra_2.3
[197] igraph_1.5.1 R6_2.5.1
[199] SingleCellExperiment_1.22.0 labeling_0.4.2
[201] cluster_2.1.4 aplot_0.2.0
[203] GenomeInfoDb_1.36.1 plotrix_3.8-2
[205] DelayedArray_0.26.7 tidyselect_1.2.0
[207] vipor_0.4.5 maps_3.4.1
[209] ggforce_0.4.1.9000 xml2_1.3.5
[211] statsExpressions_1.5.1 rsvd_1.0.5
[213] munsell_0.5.0 KernSmooth_2.23-22
[215] optimParallel_1.0-2 data.table_1.14.8
[217] htmlwidgets_1.6.2 ComplexHeatmap_2.16.0
[219] ggmin_0.0.0.9000 rlang_1.1.1
[221] clusterGeneration_1.3.7 spatstat.sparse_3.0-2
[223] spatstat.explore_3.2-1 remotes_2.4.2.1
[225] phangorn_2.11.1 fansi_1.0.4
[227] beeswarm_0.4.0