Last updated: 2022-10-04

Checks: 7 0

Knit directory: Zupancic_2022/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220105) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7f4395e. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/oc3_fin.h5seurat
    Ignored:    data/rar2020.srt.cont.oc2or3.raw.h5seurat

Unstaged changes:
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Gad1_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Gad2_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Nav1_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Nav2_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Onecut2_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Slc17a6_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Slc32a1_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Th_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Trh_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Onecut3-Trio_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Slc32a1-Onecut3_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Slc32a1-Th_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Slc32a1-Trh_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Th-Onecut3_.pdf
    Modified:   output/figures/stat-corr-plt_oc3-rna-data-Th-Trh_.pdf

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/dynamic_oc3-pop.Rmd) and HTML (docs/dynamic_oc3-pop.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7f4395e Evgenii O. Tretiakov 2022-10-04 workflowr::wflow_publish("analysis/dynamic_oc3-pop.Rmd", update = T,
html e928499 EugOT 2022-01-29 Build site.
html da268b6 EugOT 2022-01-29 rebuild with fixed output device to png and pdf
Rmd 3049d38 EugOT 2022-01-29 fix output device to png and pdf
Rmd b21b61a EugOT 2022-01-29 save final subset of cells
html b21b61a EugOT 2022-01-29 save final subset of cells
html fc91ebf EugOT 2022-01-29 Build site.
Rmd 1df6d48 EugOT 2022-01-29 wflow_publish("*")
html d106e47 EugOT 2022-01-29 Build site.
Rmd 6a77e95 EugOT 2022-01-29 wflow_publish("*")
html 6a77e95 EugOT 2022-01-29 wflow_publish("*")

# Load tidyverse infrastructure packages
library(here)
# here() starts at /home/etretiakov/src/Zupancic_2022
library(tidyverse)
# ── Attaching packages
# ───────────────────────────────────────
# tidyverse 1.3.2 ──
# ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
# ✔ tibble  3.1.8      ✔ dplyr   1.0.10
# ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
# ✔ readr   2.1.2      ✔ forcats 0.5.2 
# ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
# ✖ dplyr::filter() masks stats::filter()
# ✖ dplyr::lag()    masks stats::lag()
library(magrittr)
# 
# Attaching package: 'magrittr'
# 
# The following object is masked from 'package:purrr':
# 
#     set_names
# 
# The following object is masked from 'package:tidyr':
# 
#     extract
library(zeallot)
library(future)
# 
# Attaching package: 'future'
# 
# The following objects are masked from 'package:zeallot':
# 
#     %->%, %<-%

# Load packages for scRNA-seq analysis and visualisation
library(sctransform)
library(Seurat)
# Attaching SeuratObject
# Attaching sp
library(SeuratWrappers)
library(SeuratDisk)
# Registered S3 method overwritten by 'SeuratDisk':
#   method            from  
#   as.sparse.H5Group Seurat
library(UpSetR)
library(patchwork)
library(Nebulosa)
src_dir    <- here("code")
data_dir   <- here("data")
output_dir <- here("output")
plots_dir  <- here(output_dir, "figures")
tables_dir <- here(output_dir, "tables")
source(here(src_dir, "functions.R"))
source(here(src_dir, "genes.R"))
reseed <- 42
set.seed(seed = reseed)
# available cores
n_cores <- available_cores(prop2use = .5)
# Parameters for parallel execution
plan("multicore", workers = n_cores)
# Warning in supportsMulticoreAndRStudio(...): [ONE-TIME WARNING] Forked
# processing ('multicore') is not supported when running R from RStudio
# because it is considered unstable. For more details, how to control forked
# processing or not, and how to silence this warning in future R sessions, see ?
# parallelly::supportsMulticore
options(future.globals.maxSize = Inf,
        future.rng.onMisuse = "ignore")
plan()
# multicore:
# - args: function (..., workers = 16, envir = parent.frame())
# - tweaked: TRUE
# - call: plan("multicore", workers = n_cores)

Read data

rar2020_ages_all     <- c("E15", "E17", "P00", "P02", "P10", "P23")
rar2020_ages_postnat <-                      c("P02", "P10", "P23")
samples_df <- read_tsv(here("data/samples.tsv"))
# Rows: 8 Columns: 14
# ── Column specification ────────────────────────────────────────────────────────
# Delimiter: "\t"
# chr (8): sample, age, condition, fullname, name, sex, date, date10x
# dbl (6): ncells, libbatch, seqbatch, perfussed, nt, sn
# 
# ℹ Use `spec()` to retrieve the full column specification for this data.
# ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
colours_wtree <- setNames(read_lines(here(data_dir, "colours_wtree.tsv")),
                          1:45)

onecut  <- LoadH5Seurat(here(data_dir, "rar2020.srt.cont.oc2or3.raw.h5seurat"))
# Validating h5Seurat file
# Initializing RNA with data
# Adding counts for RNA
# Adding scale.data for RNA
# Adding variable feature information for RNA
# Adding reduction pca
# Adding cell embeddings for pca
# Adding feature loadings for pca
# Adding miscellaneous information for pca
# Adding reduction tsne
# Adding cell embeddings for tsne
# Adding miscellaneous information for tsne
# Adding reduction umap
# Adding cell embeddings for umap
# Adding miscellaneous information for umap
# Adding command information
# Adding cell-level metadata
# Adding miscellaneous information
# Adding tool-specific results
onecut3 <- subset(onecut, subset = Onecut3 > 0)

Derive and filter matrix of Onecut3

mtx_oc3 <-
    onecut3 %>%
    GetAssayData("data", "RNA") %>%
    as.data.frame() %>%
    t()
rownames(mtx_oc3) <- colnames(onecut3)

# Filter features
filt_low_genes <-
    colSums(mtx_oc3) %>%
    .[. > quantile(., 0.4)] %>%
    names()
mtx_oc3 %<>% .[, filt_low_genes]

min_filt_vector <-
    mtx_oc3 %>%
    as_tibble() %>%
    select(all_of(filt_low_genes)) %>%
    summarise(across(.fns = ~ quantile(.x, .1))) %>%
    as.list %>%
    map(as.double) %>%
    simplify %>%
    .[colnames(mtx_oc3)]

# Prepare table of intersection sets analysis
content_mtx_oc3 <-
    (mtx_oc3 > min_filt_vector) %>%
    as_tibble() %>%
    mutate_all(as.numeric)

Correlation analysis visualisation between different genes

p_corrs <- list(
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        x = Onecut3,  y = Trh, xfill = "#ffc400", yfill = "#e22ee2"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        x = Slc32a1,  y = Onecut3,  xfill = "#0000da",   yfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        x = Th,  y = Onecut3,  xfill = "#006eff",   yfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        x = Slc32a1,  y = Trh, xfill = "#0000da",   yfill = "#e22ee2"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        x = Th,  y = Trh, xfill = "#006eff",   yfill = "#e22ee2"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        x = Slc32a1,  y = Th,  xfill = "#0000da",   yfill = "#006eff"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Slc32a1,  x = Onecut3,  yfill = "#0000da",   xfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Th,  x = Onecut3,  yfill = "#006eff",   xfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Slc17a6,  x = Onecut3,  yfill = "#ff0000",   xfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Gad1,  x = Onecut3,  yfill = "#a50202",    xfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Gad2,  x = Onecut3,  yfill = "#4002a5",    xfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Onecut2,  x = Onecut3,  yfill = "#6402a5",    xfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Nav1,  x = Onecut3,  yfill = "#2502a5",    xfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Nav2,  x = Onecut3,  yfill = "#4002a5",    xfill = "#ffc400"),
    ggstatsplot::ggscatterstats(as.data.frame(mtx_oc3),
        y = Trio,  x = Onecut3,  yfill = "#2502a5",    xfill = "#ffc400")
)
# Registered S3 method overwritten by 'ggside':
#   method from   
#   +.gg   ggplot2
n_corrs <- list(
    "oc3-rna-data-Onecut3-Trh",
    "oc3-rna-data-Slc32a1-Onecut3",
    "oc3-rna-data-Th-Onecut3",
    "oc3-rna-data-Slc32a1-Trh",
    "oc3-rna-data-Th-Trh",
    "oc3-rna-data-Slc32a1-Th",
    "oc3-rna-data-Onecut3-Slc32a1",
    "oc3-rna-data-Onecut3-Th",
    "oc3-rna-data-Onecut3-Slc17a6",
    "oc3-rna-data-Onecut3-Gad1",
    "oc3-rna-data-Onecut3-Gad2",
    "oc3-rna-data-Onecut3-Onecut2",
    "oc3-rna-data-Onecut3-Nav1",
    "oc3-rna-data-Onecut3-Nav2",
    "oc3-rna-data-Onecut3-Trio"
)

walk2(n_corrs, p_corrs, save_my_plot, type = "stat-corr-plt")
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Visualise intersections sets that we are going to use (highlighted)

upset(as.data.frame(content_mtx_oc3),
  order.by = "freq",
  sets.x.label = "Number of cells",
  text.scale = c(2, 1.6, 2, 1.3, 2, 3),
  nsets = 15,
  sets = c("Gad1", "Gad2", "Slc32a1", "Slc17a6"),
  queries = list(
    list(
      query = intersects,
      params = list("Gad1", "Gad2", "Slc32a1"),
      active = T
    ),
    list(
      query = intersects,
      params = list("Slc17a6"),
      active = T
    )
  ),
  nintersects = 60,
  empty.intersections = "on"
)

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29
upset(as.data.frame(content_mtx_oc3),
  order.by = "freq",
  sets.x.label = "Number of cells",
  text.scale = c(2, 1.6, 2, 1.3, 2, 3),
  nsets = 15,
  sets = c("Th", "Trh", "Slc32a1", "Slc17a6"),
  queries = list(
    list(
      query = intersects,
      params = list("Th", "Slc32a1"),
      active = T
    ),
    list(
      query = intersects,
      params = list("Trh", "Slc17a6"),
      active = T
    )
  ),
  nintersects = 60,
  empty.intersections = "on"
)

Regroup factor by stages for more balanced groups

onecut3$age %>% forcats::fct_count()
# # A tibble: 6 × 2
#   f         n
#   <fct> <int>
# 1 E15     156
# 2 E17     104
# 3 P00      77
# 4 P02      74
# 5 P10     174
# 6 P23       7
onecut3$stage <-
  onecut3$age %>%
  forcats::fct_collapse(`Embrionic day 15` = "E15",
                        `Embrionic day 17` = "E17",
                        Neonatal = c("P00", "P02"),
                        Postnatal = c("P10", "P23"))
onecut3$stage %>% forcats::fct_count()
# # A tibble: 4 × 2
#   f                    n
#   <fct>            <int>
# 1 Embrionic day 15   156
# 2 Embrionic day 17   104
# 3 Neonatal           151
# 4 Postnatal          181

Make subset of stable neurons

onecut3$gaba_status <-
  content_mtx_oc3 %>%
  select(Gad1, Gad2, Slc32a1) %>%
  mutate(gaba = if_all(.fns = ~ .x > 0)) %>%
  .$gaba

onecut3$gaba_occurs <-
  content_mtx_oc3 %>%
  select(Gad1, Gad2, Slc32a1) %>%
  mutate(gaba = if_any(.fns = ~ .x > 0)) %>%
  .$gaba

onecut3$glut_status <-
  content_mtx_oc3 %>%
  select(Slc17a6) %>%
  mutate(glut = Slc17a6 > 0) %>%
  .$glut

oc3_fin <-
  subset(onecut3,
    cells = union(
      WhichCells(onecut3,
        expression = gaba_status == TRUE & glut_status == FALSE),
      WhichCells(onecut3,
        expression = glut_status == TRUE & gaba_occurs == FALSE)))

Check contingency tables for neurotransmitter signature

oc3_fin@meta.data %>%
  janitor::tabyl(glut_status, gaba_status)
#  glut_status FALSE TRUE
#        FALSE     0  102
#         TRUE    92    0

By age

oc3_fin@meta.data %>%
  janitor::tabyl(age, gaba_status)
#  age FALSE TRUE
#  E15    29    9
#  E17    12    4
#  P00    12    6
#  P02    16    2
#  P10    21   81
#  P23     2    0

By stage

oc3_fin@meta.data %>%
  janitor::tabyl(stage, gaba_status)
#             stage FALSE TRUE
#  Embrionic day 15    29    9
#  Embrionic day 17    12    4
#          Neonatal    28    8
#         Postnatal    23   81

Make splits of neurons by neurotransmitter signature

oc3_fin$status <- oc3_fin$gaba_status %>%
  if_else(true = "GABAergic",
    false = "glutamatergic")
Idents(oc3_fin) <- "status"
SaveH5Seurat(
  object    = oc3_fin,
  filename  = here(data_dir, "oc3_fin"),
  overwrite = TRUE,
  verbose   = TRUE
)
# Warning: Overwriting previous file /home/etretiakov/src/Zupancic_2022/data/
# oc3_fin.h5seurat
# Creating h5Seurat file for version 3.1.5.9900
# Adding counts for RNA
# Adding data for RNA
# Adding scale.data for RNA
# Adding variable features for RNA
# No feature-level metadata found for RNA
# Adding cell embeddings for pca
# Adding loadings for pca
# No projected loadings for pca
# Adding standard deviations for pca
# No JackStraw data for pca
# Adding cell embeddings for tsne
# No loadings for tsne
# No projected loadings for tsne
# No standard deviations for tsne
# No JackStraw data for tsne
# Adding cell embeddings for umap
# No loadings for umap
# No projected loadings for umap
# No standard deviations for umap
# No JackStraw data for umap

## Split on basis of neurotrans and test for difference
oc3_fin_neurotrans <- SplitObject(oc3_fin, split.by = "status")

## Split on basis of age and test for difference
oc3_fin_ages       <- SplitObject(oc3_fin, split.by = "age")

DotPlots grouped by age

Expression of GABA receptors in GABAergic Onecut3 positive cells

DotPlot(object = oc3_fin_neurotrans$GABAergic,
        features = gabar,
        group.by = "age",
        cols = c("#adffff", "#0084ff"),
        col.min = -1, col.max = 1
) + RotatedAxis()

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29

Expression of GABA receptors in glutamatergic Onecut3 positive cells

DotPlot(object = oc3_fin_neurotrans$glutamatergic,
        features = gabar,
        group.by = "age",
        cols = c("#ffc2c2", "#ff3c00"),
        col.min = -1, col.max = 1
) + RotatedAxis()

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29

Expression of glutamate receptors in GABAergic Onecut3 positive cells

DotPlot(object = oc3_fin_neurotrans$GABAergic,
        features = glutr,
        group.by = "age",
        cols = c("#adffff", "#0084ff"),
        col.min = -1, col.max = 1
) + RotatedAxis()

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29

Expression of glutamate receptors in glutamatergic Onecut3 positive cells

DotPlot(object = oc3_fin_neurotrans$glutamatergic,
        features = glutr,
        group.by = "age",
        cols = c("#ffc2c2", "#ff3c00"),
        col.min = -1, col.max = 1
) + RotatedAxis()

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29

DotPlots grouped by stage

Expression of GABA receptors in GABAergic Onecut3 positive cells

DotPlot(object = oc3_fin_neurotrans$GABAergic,
        features = gabar,
        group.by = "stage",
        cols = c("#adffff", "#0084ff"),
        col.min = -1, col.max = 1
) + RotatedAxis()
# Warning: Scaling data with a low number of groups may produce misleading results

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29

Expression of GABA receptors in glutamatergic Onecut3 positive cells

DotPlot(object = oc3_fin_neurotrans$glutamatergic,
        features = gabar,
        group.by = "stage",
        cols = c("#ffc2c2", "#ff3c00"),
        col.min = -1, col.max = 1
) + RotatedAxis()
# Warning: Scaling data with a low number of groups may produce misleading results

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29

Expression of glutamate receptors in GABAergic Onecut3 positive cells

DotPlot(object = oc3_fin_neurotrans$GABAergic,
        features = glutr,
        group.by = "stage",
        cols = c("#adffff", "#0084ff"),
        col.min = -1, col.max = 1
) + RotatedAxis()
# Warning: Scaling data with a low number of groups may produce misleading results

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29

Expression of glutamate receptors in glutamatergic Onecut3 positive cells

DotPlot(object = oc3_fin_neurotrans$glutamatergic,
        features = glutr,
        group.by = "stage",
        cols = c("#ffc2c2", "#ff3c00"),
        col.min = -1, col.max = 1
) + RotatedAxis()
# Warning: Scaling data with a low number of groups may produce misleading results

Version Author Date
da268b6 EugOT 2022-01-29
fc91ebf EugOT 2022-01-29
6a77e95 EugOT 2022-01-29
sbs_mtx_oc <-
    onecut %>%
    GetAssayData("data", "RNA") %>%
    as.data.frame() %>%
    t()
rownames(sbs_mtx_oc) <- colnames(onecut)

# Filter features
filt_low_genes2 <-
    colSums(sbs_mtx_oc) %>%
    .[. > quantile(., 0.4)] %>%
    names()
sbs_mtx_oc %<>% .[, filt_low_genes2]

min_filt_vector2 <-
    sbs_mtx_oc %>%
    as_tibble() %>%
    select(all_of(filt_low_genes2)) %>%
    summarise(across(.fns = ~ quantile(.x, .005))) %>%
    as.list %>%
    map(as.double) %>%
    simplify %>%
    .[filt_low_genes2]

# Prepare table of intersection sets analysis
content_sbs_mtx_oc <-
    (sbs_mtx_oc > min_filt_vector2) %>%
    as_tibble() %>%
    mutate_all(as.numeric)


onecut$gaba_status <-
  content_sbs_mtx_oc %>%
  select(Gad1, Gad2, Slc32a1) %>%
  mutate(gaba = if_all(.fns = ~ .x > 0)) %>%
  .$gaba

onecut$gaba_occurs <-
  content_sbs_mtx_oc %>%
  select(Gad1, Gad2, Slc32a1) %>%
  mutate(gaba = if_any(.fns = ~ .x > 0)) %>%
  .$gaba

onecut$glut_status <-
  content_sbs_mtx_oc %>%
  select(Slc17a6) %>%
  mutate(glut = Slc17a6 > 0) %>%
  .$glut

oc_fin <-
  subset(onecut,
    cells = union(
      WhichCells(onecut,
        expression = gaba_status == TRUE & glut_status == FALSE),
      WhichCells(onecut,
        expression = glut_status == TRUE & gaba_occurs == FALSE)))

oc_fin$status <- oc_fin$gaba_status %>%
  if_else(true = "GABAergic",
    false = "glutamatergic")
Idents(oc_fin) <- "status"

sbs_mtx_oc <-
    oc_fin %>%
    GetAssayData("data", "RNA") %>%
    as.data.frame() %>%
    t()
rownames(sbs_mtx_oc) <- colnames(oc_fin)

# Filter features
filt_low_genes2 <-
    colSums(sbs_mtx_oc) %>%
    .[. > quantile(., 0.4)] %>%
    names()
sbs_mtx_oc %<>% .[, filt_low_genes2]

min_filt_vector2 <-
    sbs_mtx_oc %>%
    as_tibble() %>%
    select(all_of(filt_low_genes2)) %>%
    summarise(across(.fns = ~ quantile(.x, .005))) %>%
    as.list %>%
    map(as.double) %>%
    simplify %>%
    .[filt_low_genes2]

# Prepare table of intersection sets analysis
content_sbs_mtx_oc <-
    (sbs_mtx_oc > min_filt_vector2) %>%
    as_tibble() %>%
    mutate_all(as.numeric)
upset(as.data.frame(content_sbs_mtx_oc),
  order.by = "freq",
  sets.x.label = "Number of cells",
  text.scale = c(2, 1.6, 2, 1.3, 2, 3),
  nsets = 15,
  sets = c("Gad1", "Gad2", "Slc32a1", "Slc17a6", "Onecut3"),
  queries = list(
    list(
      query = intersects,
      params = list("Gad1", "Gad2", "Slc32a1", "Onecut3"),
      active = T
    ),
    list(
      query = intersects,
      params = list("Slc17a6", "Onecut3"),
      active = T
    )
  ),
  nintersects = 20,
  empty.intersections = NULL
)

upset(as.data.frame(content_sbs_mtx_oc),
  order.by = "freq",
  sets.x.label = "Number of cells",
  text.scale = c(2, 1.6, 2, 1.3, 2, 3),
  nsets = 15,
  sets = c("Th", "Trh", "Slc32a1", "Slc17a6", "Onecut3"),
  queries = list(
    list(
      query = intersects,
      params = list("Th", "Slc32a1", "Onecut3"),
      active = T
    ),
    list(
      query = intersects,
      params = list("Trh", "Slc17a6", "Onecut3"),
      active = T
    )
  ),
  nintersects = 20,
  empty.intersections = NULL
)


sbs_mtx_oc_full <- content_sbs_mtx_oc |> 
  select(any_of(c(neurotrans, glutr, gabar, "Trh", "Th", "Onecut3"))) |> 
  dplyr::bind_cols(oc_fin@meta.data)

sbs_mtx_oc_full |> glimpse()
# Rows: 1,068
# Columns: 74
# $ Slc17a6          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# $ Slc17a8          <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,…
# $ Slc1a1           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,…
# $ Slc1a2           <dbl> 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0,…
# $ Slc1a6           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,…
# $ Gad1             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
# $ Slc32a1          <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
# $ Slc6a1           <dbl> 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,…
# $ Gria1            <dbl> 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0,…
# $ Gria2            <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,…
# $ Gria3            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,…
# $ Gria4            <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
# $ Grid1            <dbl> 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,…
# $ Grid2            <dbl> 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,…
# $ Grik1            <dbl> 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1,…
# $ Grik2            <dbl> 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
# $ Grik3            <dbl> 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1,…
# $ Grik4            <dbl> 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,…
# $ Grik5            <dbl> 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0,…
# $ Grin1            <dbl> 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,…
# $ Grin2a           <dbl> 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,…
# $ Grin2b           <dbl> 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0,…
# $ Grin2d           <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# $ Grin3a           <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,…
# $ Grm1             <dbl> 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,…
# $ Grm5             <dbl> 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,…
# $ Grm2             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# $ Grm3             <dbl> 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0,…
# $ Grm4             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# $ Grm7             <dbl> 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,…
# $ Grm8             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0,…
# $ Gabra1           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0,…
# $ Gabra2           <dbl> 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,…
# $ Gabra3           <dbl> 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,…
# $ Gabra4           <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# $ Gabra5           <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0,…
# $ Gabrb1           <dbl> 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0,…
# $ Gabrb2           <dbl> 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,…
# $ Gabrb3           <dbl> 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,…
# $ Gabrg1           <dbl> 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0,…
# $ Gabrg2           <dbl> 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1,…
# $ Gabrg3           <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,…
# $ Gabre            <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# $ Gabrq            <dbl> 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,…
# $ Gabbr1           <dbl> 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1,…
# $ Gabbr2           <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0,…
# $ Trh              <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# $ Th               <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,…
# $ Onecut3          <dbl> 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,…
# $ nGene            <int> 3456, 2277, 1660, 2308, 1478, 2216, 955, 2135, 3856, …
# $ nUMI             <dbl> 8525, 4649, 2794, 5118, 3123, 4215, 1355, 3898, 9751,…
# $ orig.ident       <chr> "FC2P23", "FC2P23", "FC2P23", "FC2P10", "FC2P10", "FC…
# $ res.0.2          <chr> "5", "5", "5", "5", "5", "5", "0", "5", "3", "0", "3"…
# $ res.0.4          <chr> "5", "5", "5", "5", "5", "5", "0", "5", "21", "4", "7…
# $ res.0.8          <chr> "19", "19", "19", "26", "19", "19", "1", "19", "17", …
# $ res.1.2          <chr> "19", "19", "19", "27", "19", "19", "6", "19", "28", …
# $ res.2            <chr> "20", "20", "20", "27", "20", "20", "13", "20", "34",…
# $ tree.ident       <int> 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 12, 1…
# $ pro_Inter        <chr> "13", "13", "13", "13", "13", "13", "13", "13", "18",…
# $ pro_Enter        <chr> "13", "13", "13", "13", "13", "13", "13", "13", "18",…
# $ tree_final       <fct> 11, 11, 11, 11, 11, 11, 11, 11, 8, 8, 8, 8, 8, 8, 6, …
# $ subtree          <fct> 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 1…
# $ prim_walktrap    <fct> 1, 1, 1, 1, 1, 1, 3, 1, 3, 3, 3, 15, 3, 3, 3, 12, 11,…
# $ umi_per_gene     <dbl> 2.466725, 2.041722, 1.683133, 2.217504, 2.112991, 1.9…
# $ log_umi_per_gene <dbl> 0.3921207, 0.3099965, 0.2261183, 0.3458645, 0.3248976…
# $ nCount_RNA       <dbl> 8525, 4649, 2794, 5118, 3123, 4215, 1355, 3898, 9751,…
# $ nFeature_RNA     <int> 3456, 2277, 1660, 2308, 1478, 2216, 955, 2135, 3856, …
# $ wtree            <fct> 10, 10, 10, 10, 10, 10, 11, 10, 11, 11, 11, 21, 11, 1…
# $ age              <fct> P23, P23, P23, P10, P10, P10, E17, E15, P23, P23, P10…
# $ postnat          <int> 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,…
# $ gaba_status      <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,…
# $ gaba_occurs      <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,…
# $ glut_status      <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS…
# $ status           <chr> "GABAergic", "GABAergic", "GABAergic", "GABAergic", "…

sbs_mtx_oc_full$modulator <- 
  sbs_mtx_oc_full %>%
  select(Trh, Th) %>%
  mutate(modulator = if_any(.fns = ~ .x > 0)) %>%
  .$modulator

sbs_mtx_oc_full$oc3 <- 
  (sbs_mtx_oc_full$Onecut3 > 0)

library(ggstatsplot)
# You can cite this package as:
#      Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach.
#      Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
# 
# Attaching package: 'ggstatsplot'
# The following object is masked from 'package:future':
# 
#     %<-%
# for reproducibility
set.seed(123)

## plot
# ggpiestats(
#   data = sbs_mtx_oc_full,
#   x = modulator,
#   y = status,
#   perc.k = 1,
#   package = "ggsci",
#   palette = "category10_d3",
# ) + # further modification with `{ggplot2}` commands
#   ggplot2::theme(
#     plot.title = ggplot2::element_text(
#       color = "black",
#       size = 14,
#       hjust = 0
#     )
#   )

# plot
grouped_ggpiestats(
  # arguments relevant for `ggpiestats()`
  data = sbs_mtx_oc_full,
  x = modulator,
  y = oc3,
  grouping.var = status,
  perc.k = 1,
  package = "ggsci",
  palette = "category10_d3",
  # arguments relevant for `combine_plots()`
  title.text = "Neuromodulator specification of onecut-driven hypothalamic neuronal lineages by Onecut3 and main neurotransmitter expression",
  caption.text = "Asterisks denote results from proportion tests; \n***: p < 0.001, ns: non-significant",
  plotgrid.args = list(nrow = 2)
)


sessionInfo()
# R version 4.2.1 (2022-06-23)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: Ubuntu 22.04.1 LTS
# 
# Matrix products: default
# BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
# LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
# 
# locale:
#  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
#  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
# [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# other attached packages:
#  [1] ggstatsplot_0.9.4     Nebulosa_1.6.0        patchwork_1.1.2      
#  [4] UpSetR_1.4.0          SeuratDisk_0.0.0.9020 SeuratWrappers_0.3.0 
#  [7] sp_1.5-0              SeuratObject_4.1.2    Seurat_4.2.0         
# [10] sctransform_0.3.5     future_1.28.0         zeallot_0.1.0        
# [13] magrittr_2.0.3        forcats_0.5.2         stringr_1.4.1        
# [16] dplyr_1.0.10          purrr_0.3.4           readr_2.1.2          
# [19] tidyr_1.2.1           tibble_3.1.8          ggplot2_3.3.6        
# [22] tidyverse_1.3.2       here_1.0.1            workflowr_1.7.0      
# 
# loaded via a namespace (and not attached):
#   [1] estimability_1.4.1          scattermore_0.8            
#   [3] R.methodsS3_1.8.2           coda_0.19-4                
#   [5] ragg_1.2.3                  bit64_4.0.5                
#   [7] knitr_1.40                  irlba_2.3.5                
#   [9] multcomp_1.4-20             DelayedArray_0.22.0        
#  [11] R.utils_2.12.0              data.table_1.14.2          
#  [13] rpart_4.1.16                RCurl_1.98-1.8             
#  [15] generics_0.1.3              BiocGenerics_0.42.0        
#  [17] callr_3.7.2                 cowplot_1.1.1              
#  [19] TH.data_1.1-1               RANN_2.6.1                 
#  [21] correlation_0.8.2           bit_4.0.4                  
#  [23] tzdb_0.3.0                  spatstat.data_2.2-0        
#  [25] xml2_1.3.3                  lubridate_1.8.0            
#  [27] httpuv_1.6.6                SummarizedExperiment_1.26.1
#  [29] assertthat_0.2.1            gargle_1.2.1               
#  [31] xfun_0.33                   hms_1.1.2                  
#  [33] jquerylib_0.1.4             evaluate_0.16              
#  [35] promises_1.2.0.1            fansi_1.0.3                
#  [37] dbplyr_2.2.1                readxl_1.4.1               
#  [39] igraph_1.3.5                DBI_1.1.3                  
#  [41] htmlwidgets_1.5.4           spatstat.geom_2.4-0        
#  [43] googledrive_2.0.0           stats4_4.2.1               
#  [45] paletteer_1.4.1             ellipsis_0.3.2             
#  [47] ks_1.13.5                   backports_1.4.1            
#  [49] insight_0.18.4              prismatic_1.1.1            
#  [51] deldir_1.0-6                MatrixGenerics_1.8.1       
#  [53] vctrs_0.4.2                 SingleCellExperiment_1.18.1
#  [55] Biobase_2.56.0              remotes_2.4.2              
#  [57] ROCR_1.0-11                 abind_1.4-5                
#  [59] cachem_1.0.6                withr_2.5.0                
#  [61] progressr_0.11.0            rgdal_1.5-32               
#  [63] vroom_1.5.7                 emmeans_1.8.1-1            
#  [65] mclust_5.4.10               goftest_1.2-3              
#  [67] cluster_2.1.4               lazyeval_0.2.2             
#  [69] crayon_1.5.2                hdf5r_1.3.6                
#  [71] labeling_0.4.2              pkgconfig_2.0.3            
#  [73] GenomeInfoDb_1.32.4         nlme_3.1-159               
#  [75] statsExpressions_1.3.3      rlang_1.0.6                
#  [77] globals_0.16.1              lifecycle_1.0.2            
#  [79] miniUI_0.1.1.1              MatrixModels_0.5-1         
#  [81] sandwich_3.0-2              modelr_0.1.9               
#  [83] rsvd_1.0.5                  cellranger_1.1.0           
#  [85] rprojroot_2.0.3             polyclip_1.10-0            
#  [87] matrixStats_0.62.0          lmtest_0.9-40              
#  [89] datawizard_0.6.1            Matrix_1.5-1               
#  [91] zoo_1.8-11                  reprex_2.0.2               
#  [93] whisker_0.4                 ggridges_0.5.4             
#  [95] processx_3.7.0              googlesheets4_1.0.1        
#  [97] png_0.1-7                   viridisLite_0.4.1          
#  [99] parameters_0.18.2           bitops_1.0-7               
# [101] getPass_0.2-2               R.oo_1.25.0                
# [103] KernSmooth_2.23-20          parallelly_1.32.1          
# [105] spatstat.random_2.2-0       S4Vectors_0.34.0           
# [107] scales_1.2.1                plyr_1.8.7                 
# [109] ica_1.0-3                   zlibbioc_1.42.0            
# [111] compiler_4.2.1              RColorBrewer_1.1-3         
# [113] fitdistrplus_1.1-8          snakecase_0.11.0           
# [115] cli_3.4.1                   XVector_0.36.0             
# [117] listenv_0.8.0               pbapply_1.5-0              
# [119] ps_1.7.1                    ggside_0.2.1               
# [121] MASS_7.3-58.1               mgcv_1.8-40                
# [123] tidyselect_1.1.2            stringi_1.7.8              
# [125] textshaping_0.3.6           highr_0.9                  
# [127] yaml_2.3.5                  ggrepel_0.9.1.9999         
# [129] grid_4.2.1                  sass_0.4.2                 
# [131] tools_4.2.1                 future.apply_1.9.1         
# [133] parallel_4.2.1              rstudioapi_0.14            
# [135] git2r_0.30.1                janitor_2.1.0.9000         
# [137] gridExtra_2.3               farver_2.1.1               
# [139] Rtsne_0.16                  digest_0.6.29              
# [141] BiocManager_1.30.18         rgeos_0.5-9                
# [143] shiny_1.7.2                 pracma_2.4.2               
# [145] Rcpp_1.0.9                  GenomicRanges_1.48.0       
# [147] broom_1.0.1                 BayesFactor_0.9.12-4.4     
# [149] performance_0.9.2           later_1.3.0                
# [151] RcppAnnoy_0.0.19            httr_1.4.4                 
# [153] effectsize_0.7.0.5          colorspace_2.0-3           
# [155] rvest_1.0.3                 fs_1.5.2                   
# [157] tensor_1.5                  reticulate_1.26            
# [159] IRanges_2.30.1              splines_4.2.1              
# [161] uwot_0.1.14                 rematch2_2.1.2             
# [163] spatstat.utils_2.3-1        systemfonts_1.0.4          
# [165] plotly_4.10.0               xtable_1.8-4               
# [167] jsonlite_1.8.1              R6_2.5.1                   
# [169] pillar_1.8.1                htmltools_0.5.3            
# [171] mime_0.12                   glue_1.6.2                 
# [173] fastmap_1.1.0               codetools_0.2-18           
# [175] mvtnorm_1.1-3               utf8_1.2.2                 
# [177] lattice_0.20-45             bslib_0.4.0                
# [179] spatstat.sparse_2.1-1       leiden_0.4.3               
# [181] survival_3.4-0              rmarkdown_2.16             
# [183] munsell_0.5.0               GenomeInfoDbData_1.2.8     
# [185] haven_2.5.1                 reshape2_1.4.4             
# [187] gtable_0.3.1                bayestestR_0.13.0          
# [189] spatstat.core_2.4-4